DocuSign Envelope ID: 9AACE247-92EC-45E6-9D47-F923800F8B61
I “-1426 Elliot Aventie-W, Seatile, WA 98119
(886) 760.0222 | info@ioactive.com. 7

August 27, 2021

Pando Inc.

12/F, San Toi Building

137-139 Connaught Road

Central West, Hong Kong, 999077, HK

Code Review and Penetration Test

Pando engaged I0Active to perform a code review and penetration test of its service.

Three I0Active consultants conducted the assessment from the 7" of June to the 2™ of July
2021 for a total effort of eight resource weeks. The consultants focused on the most
common web application security vulnerabilities as listed in the OWASP Top Ten.

The following branches were in scope for this assessment:

¢ https://github.com/fox-one/compound/tree/audit

o https://github.com/fox-one/pando/tree/audit

Results: |I0Active identified one high-risk vulnerability in the service.

Pando addressed the issue and engaged |IOActive to perform remediation validation
testing. One IOActive security consultant conducted a retest on the 9" of August 2021 and
confirmed the reported issue was properly fixed.

Respectfully,

DocuSigned by:

Juamifr Stffuns

EOFASDOETAZDASC.
Jennifer gte ens

Chief Executive Officer
|OActive, Inc.

FDA LCA Appraved - KM

L . ©2021 I0Active, Inc. All rights reserved. Page 1 of 7



DocuSign Envelope ID: 9AACE247-92EC-45E6-9D47-F923800F8B61 — . _ -
r *1426 Elliot Avenie W, Seattle, WA98119 T AT AL & N P T
(886) 760.0222 | info@ioactive.com. A e / . ‘

Technical Summary

#MP-07 - Compound - Borrow Repayment Transaction May Fail After Modifying
Borrow Balance [FIXED]

Host(s) / File(s) Compound worker/snapshot/borrow_repay.go
Category Authentication

Testing Method Code Review

Tools Used Visual Studio Code

Likelihood Medium (3)

Impact Critical (5)

Total Risk Rating High (15)

Remediation Status Fixed

Effort to Fix Low

Threat and Impact

IOActive found that the borrow repayment logic in Payee.handleRepayEvent () suffered from a
logic bug that could result in a 'borrow balance' being updated as 'repaid' or 'partially repaid' in the
event of edge case failure conditions. As such, the error exists because logic within this function
updates the balance on the relevant borrow object before actually generating and storing the
transactions necessary for the repayment to take place. If error conditions occur during the system's
attempts to generate and store these transactions, the result will be that the borrow would appear to
have been repaid, yet no repayment transactions will end up taking place.

The discussion below briefly outlines the relevant code path.

The payee worker in Compound is responsible for dispatching handling for a number of events,
including ActionTypeRepay. This action is used to repay a borrow (i.e. a loan). When an item of
this type is encountered by the worker, Compound calls into Payee .handleRepayEvent (), which
lives in the worker/snapshot/borrow_repay.go file

The code fragments below, from Payee.handleRepayEvent (), show the relevant borrow
balance being updated, with failure conditions actually being possible after these updates are made.
Note the annotations of the form “[n] potential failure point.”

//update borrow info
borrowBalance, e := w.borrowService.BorrowBalance (ctx,
borrow, market)
if e != nil {
log.Errorln(e)

L . ©2021 I0Active, Inc. All rights reserved. Page 2 of 7




DocuSign Envelope ID: 9AACE247-92EC-45E6-9D47-F923800F8B61 I
I “-1426 Elliot Aventie-W, Seatile, WA 98119 7
(886) 760.0222 | info@ioactive.com. 7

return e
}
realRepaidBalance := repayAmount
redundantAmount :=
repayAmount.Sub (borrowBalance) .Truncate (8)
newBalance := borrowBalance.Sub (repayAmount)
newlndex := market.BorrowlIndex
if newBalance.LessThanOrEqual (decimal.Zero) {
newBalance = decimal.Zero
newlndex = decimal.Zero
realRepaidBalance = borrowBalance

if output.ID > borrow.Version {
borrow.Principal = newBalance.Truncate(1l6)
borrow.InterestIndex = newlIndex.Truncate (16)
if e = w.borrowStore.Update (ctx, borrow,
output.ID); e != nil ({ // [1] update the 'borrow' with
the new balance that is correct after the user-specified
amount is deducted due to repayment
log.Errorln(e)
return e

if output.ID > market.Version {
market.TotalBorrows =
market.TotalBorrows.Sub (realRepaidBalance) .Truncate (16)
market.TotalCash =
market.TotalCash.Add (realRepaidBalance) .Truncate (16)
if e = w.marketStore.Update (ctx, market,
output.ID); e != nil { // [2] potential failure point
log.Errorln(e)
return e

// market transaction

marketTransaction :=
core.BuildMarketUpdateTransaction (ctx, market,
foxuuid.Modify (output.TraceID, "update market"))

if e = w.transactionStore.Create(ctx,
marketTransaction); e != nil { // [3] potential failure
point
log.WithError(e) .Errorln("create transaction
error")

return e

}

// add transaction

extra := core.NewTransactionExtral)

extra.Put (core.TransactionKeyBorrow, core.ExtraBorrow|{
UserID: borrow.UserID,
AssetID: borrow.AssetID,
Principal: borrow.Principal,

k . ©2021 I0Active, Inc. All rights reserved. Page 3 of 7




DocuSign Envelope ID: 9AACE247-92EC-45E6-9D47-F923800F8B61 _— : _
r ~1426 Elliot Aveniie W, Seatile, WA 98119 T T T A AA L g e P e
(886) 760.0222 | info@ioactive.com. g A f !

InterestIndex: borrow.InterestIndex,
})
transaction := core.BuildTransactionFromQOutput (ctx,
userID, followID, core.ActionTypeRepay, output, extra)
if e = w.transactionStore.Create (ctx, transaction); e
= nil { // [4] potential failure point
log.WithError (e) .Errorln("create transaction
error")
return e

}

The operation at [1] updates the 'borrow balance' as per the amount the user is attempting to repay
(e.g. complete or partial balance), and this change is committed to the 'borrow store'. However,
failure points exist at [2], [3], and [4]; if failure does happen at one of these points, transactions to
actually repay the 'borrow' may not actually be created in the system, hence the 'borrow' will appear
to have been repaid, yet repayment will not actually happen.

These operations at these failure points revolve around database commit operations, with the
relevant 'stores' being SQLite databases managed by the GORM library. Whilst failures at these
points may be unlikely under normal operating conditions, simple database commit operations may
occasionally fail under high load or when a system experiences edge-case conditions; for example,
low memory conditions may result in memory allocation failures, which in turn could result in a
database commit operation failing overall.

Recommendations

Commit changes to the borrow store only after generating and storing the relevant repayment
transactions.

Retest Results

2021-08-09: Fixed
The code now makes sure that the database is not updated if the payment fails.

// handle borrow repay event
func (w *Payee) handleRepayEvent (ctx context.Context, output
*core.Output, userID, followID string, body []lbyte) error {

log := logger.FromContext (ctx) .WithField ("worker",
"borrow_repay")

repayAmount := output.Amount
assetID := output.AssetID

log.Infoln(":asset:", output.AssetID, "amount:",
repayAmount)

market, e := w.marketStore.Find(ctx, assetID)
if e != nil {
return e

}

if market.ID == 0 {
return w.handleRefundEvent (ctx, output, userID,
followID, core.ActionTypeRepay, core.ErrMarketNotFound)

k . ©2021 I0Active, Inc. All rights reserved. Page 4 of 7




DocuSign Envelope ID: 9AACE247-92EC-45E6-9D47-F923800F8B61 _— ! ) :
. *-1426 Elliot Aveniis W, Seatile, WA98119 TT A AL g ey i .
(886) 760.0222 | info@ioactive.com. L - =0 / \ il

//update interest
if e = w.marketService.AccruelInterest(ctx, market,
output.CreatedAt); e != nil {
log.Errorln (e)
return e

borrow, e := w.borrowStore.Find(ctx, userID, market.RAssetID)
if e != nil {
return e

if borrow.ID == 0 {
return w.handleRefundEvent (ctx, output, userID,
followID, core.ActionTypeRepay, core.ErrBorrowNotFound)

t

transaction, e := w.transactionStore.FindByTracelID (ctx,
output.TracelD)

if e != nil {
return e
}
if transaction.ID == 0 {

if w.marketService.IsMarketClosed(ctx, market) {
return w.handleRefundEvent (ctx, output, userID,
followID, core.ActionTypeRepay, core.ErrMarketClosed)
}

//update borrow info
borrowBalance, e := w.borrowService.BorrowBalance (ctx,
borrow, market)
if e != nil {
log.Errorln (e)
return e

newBalance := borrowBalance.Sub (repayAmount)
newIndex := market.BorrowlIndex
if !mewBalance.IsPositive () {

newBalance = decimal.Zero

newIndex = decimal.Zero

repayAmount = borrowBalance

extra := core.NewTransactionkExtra ()
extra.Put ("repay amount", repayAmount.Truncate(16))
extra.Put ("new _balance", newBalance.Truncate(16))

extra.Put ("new_index", newlIndex.Truncate(16))
extra.Put (core.TransactionKeyBorrow, core.ExtraBorrow{
UserID: borrow.UserID,
AssetID: borrow.AssetID,
Principal: newBalance,

InterestIndex: newlndex,

b

k ©2021 10Active, Inc. All rights reserved. Page 50of 7




DocuSign Envelope ID: 9AACE247-92EC-45E6-9D47-F923800F8B61
I “-1426 Elliot Aventie-W, Seattle, WA 98119
(886) 760.0222 | info@ioactive.com. AL

transaction = core.BuildTransactionFromOutput (ctx,
userID, followID, core.ActionTypeRepay, output, extra)
if e := w.transactionStore.Create (ctx, transaction); e
'= nil {
return e

var extra struct {
RepayAmount decimal.Decimal "json:"repay amount"’
NewBalance decimal.Decimal ‘json:"new balance"’
NewIndex decimal.Decimal "json:"new_index"’

if e := transaction.UnmarshalExtraData(&extra); e != nil {
return e

if output.ID > borrow.Version {
borrow.Principal = extra.NewBalance
borrow.InterestIndex = extra.Newlndex
i1f e = w.borrowStore.Update (ctx, borrow, output.ID); e
'= nil {
log.Errorln (e)
return e

1f refundAmount := output.Amount.Sub(extra.RepayAmount) ;
refundAmount.GreaterThan (decimal.Zero)
transferAction := core.TransferAction{
Source: core.ActionTypeRepayRefundTransfer,
FollowID: followID,

if e := w.transferOut (ctx, userID, followID,
output.TraceID, assetID, refundAmount, &transferAction); e !=
nil {
return e

if output.ID > market.Version {
market.TotalBorrows =
market.TotalBorrows.Sub (extra.NewBalance) .Truncate (16)
market.TotalCash =
market.TotalCash.Add (extra.NewBalance) . Truncate (16)
1f e = w.marketStore.Update (ctx, market, output.ID); e
= nil {
log.Errorln (e)
return e

return nil

k ©2021 10Active, Inc. All rights reserved. Page 6 of 7




DocuSign Envelope ID: 9AACE247-92EC-45E6-9D47-F923800F8B61 I
I “-1426 Elliot Aventie-W, Seatile, WA 98119 7
(886) 760.0222 | info@ioactive.com. 7

I0Active Qualifications

IOActive has more than 20 years of experience providing information security consulting
services. Established in 1998, I0Active is an industry leader that specializes in:

e IT infrastructure vulnerability assessments and pen tests
e Application security source code and architecture reviews
e |ICS/SCADA and smart grid assessments and pen tests

o Emerging market assessments and pen tests (cloud, embedded, automotive, and
more)

¢ Security development lifecycle training and review

IOActive works with many Global 500 companies including organizations in the power and
utility, industrial, game, hardware, embedded, retail, financial, media, travel, aerospace,
healthcare, high-tech, social networking, cloud, and software development industries.

We provide unequalled technical services, strive to become trusted advisors to our clients,
and help them achieve their business and security objectives. We go well beyond off-the-
shelf code scanning tools to perform gap analysis on information security policies and
protocols. We also conduct deep analyses of information systems, software architecture,
and source code using leading information risk and security management frameworks and
focused threat models.

Your opponents do not use unsophisticated commercial pen-test tools to undermine your
enterprise security. They use the smartest code breakers money can buy to footprint and
damage your organization’s brand using advanced, often unknown methods. IOActive's
industry experience helps our clients consistently stay ahead of tomorrow's threats.

IOActive attracts people who contribute to the growing body of security knowledge by
speaking at elite conferences such as RSA, SANS, SOURCE, Black Hat, InfoSecurity
Europe, DEF CON, Blue Hat, and CanSecWest. We also have key advisors like Steve
Wozniak and David Lacey, luminaries who affect how security and technology shape our
world.

L . ©2021 I0Active, Inc. All rights reserved. Page 7 of 7



